Sains Malaysiana 52(11)(2023): 3121-3134
http://doi.org/10.17576/jsm-2023-5211-08
Probiotics
Potential of Lactic Acid Bacteria from Horse Milk in Tambora,
West Nusa Tenggara, Indonesia
(Potensi Probiotik Bakteria Asid Laktik daripada Susu Kuda di Tambora,
Barat Nusa Tenggara, Indonesia)
SULISTIANI1,2, R. HARYO BIMO SETIARTO1,2,*, FERA
R DEWI1,2, DANDY YUSUF1,2, AHMAD FATHONI1,2,
RINI HANDAYANI1, LUTFI ANGGADHANIA1, LUTFI ANSHORY1,
NINU SETIANINGRUM1 & TATIK KHUSNIATI1
1Research Center for Applied
Microbiology, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor Km 46, Soekarno Science Centre, Cibinong, Bogor, 16911 West Java, Indonesia
2Research Collaboration Center for Traditional Fermentation, National Research and Innovation Agency (BRIN)
Indonesia
Received: 22 November 2022/Accepted: 25 October 2023
Abstract
This study
explores the probiotic potential of lactic acid bacteria (LAB) in horse milk
from Tambora, West Nusa Tenggara by examining its
functional and probiotic attributes, including bile salt tolerance, low pH,
simulated gastric juice (SGJ), simulated intestinal juice (SIJ), antibacterial
activity, as well as bile salt hydrolase (BSH) genes. Genotyping of LAB was
performed using restriction fragment length polymorphism-polymerase chain
reaction (RFLP-PCR) analysis and then identified based on the 16S rRNA gene. A total of 25 LAB isolates showed the ability to
grow at low pH, tolerant to bile, and survived under SIJ and SGJ conditions.
The BSH gene was confirmed in three isolates, namely: SK1-28, SK2-30, and
SK2-34. Results of RFLP-PCR analysis showed that the LAB isolates were grouped
into three groups based on the number and molecular weight of the differences
DNA fragments. The 16S rRNA analysis showed that the
first two groups were Lacticaseibacillus rhamnosus,
whereas the third group was Lactiplantibacillus plantarum. In addition, all Lacticaseibacillus rhamnosusisolates
in group I showed the ability to grow at pH 9.0, but not group II. It can be
concluded that Lacticaseibacillus rhamnosus and Lactiplantibacillus plantarum can
be used as the indigenous probiotic bacteria source from Indonesia.
Keywords: Horse's
milk; lactic acid bacteria (LAB); Lacticaseibacillus rhamnosus; Lactiplantibacillus plantarum; probiotics
Abstrak
Penyelidikan ini mengkaji potensi probiotik bakteria asid laktik (LAB) dalam susu kuda dari Tambora, Barat Nusa
Tenggara dengan meneliti sifat fungsian dan probiotiknya, termasuk toleransi garam hempedu, pH rendah, jus gastrik disimulasi (SGJ), jus usus disimulasi (SIJ) aktiviti antibakteria serta gen hidrolase garam hempedu (BSH). Genotip LAB dilakukan menggunakan analisis tindak balas rantai polimorfisme-polimerase sekatan panjang serpihan (RFLP-PCR) dan kemudian dikenal pasti berdasarkan gen rRNA 16S. Sebanyak 25 pencilan LAB menunjukkan keupayaan untuk membesar pada pH rendah, bertoleransi dengan hempedu dan bermandiri dalam keadaan SIJ dan SGJ. Gen BSH telah disahkan dalam tiga pencilan iaitu:
SK1-28, SK2-30 dan SK2-34. Keputusan analisis RFLP-PCR menunjukkan bahawa pencilan LAB dikelompokkan kepada tiga kumpulan berdasarkan bilangan dan berat molekul perbezaan serpihan DNA. Analisis rRNA 16S menunjukkan bahawa dua kumpulan pertama ialah Lacticaseibacillus rhamnosus, manakala kumpulan ketiga ialah Lactiplantibacillus plantarum. Di samping itu, semua pencilan Lacticaseibacillus rhamnosus dalam kumpulan I menunjukkan keupayaan untuk berkembang pada pH 9.0 tetapi bukan kumpulan II. Dapat disimpulkan bahawa Lacticaseibacillus rhamnosus dan Lactiplantibacillus plantarum boleh digunakan sebagai sumber bakteria probiotik asli dari Indonesia.
Kata kunci: Bakteria asid laktik (LAB); Lacticaseibacillus rhamnosus; Lactiplantibacillus plantarum; probiotik; susu kuda
REFERENCES
Agaliya, P.J. & Jeevaratnam, K. 2012. Screening of Lactobacillus plantarum isolated from fermented idli batter for
probiotic properties. African Journal of Biotechnology 11(65):
12856-12864.
Al-Madboly, L.A. & Abdullah, A.K. 2015. Potent
antagonistic activity of egyptian Lactobacillus plantarum against
multiresistant and virulent food-associated pathogens. Frontiers in
Microbiology 6: 347.
Ardiansyah, Ariffa, F., Astuti, R.M., David, W., Handoko, D.D., Budijanto, S. & Shirakawa, S. 2021. Non-volatile compounds and blood pressure-lowering activity of Inpari 30 and Cempo Ireng fermented and non-fermented rice bran. AIMS Agriculture and Food 6(1): 337-359.
Argyri, A.A., Zoumpopoulou, G., Karatzas, K.A.G., Tsakalidou,
E., Nychas, G.J.E., Panagou, E.Z. & Tassou, C.C. 2013. Selection of
potential probiotic lactic acid bacteria from fermented olives by in vitro tests. Food Microbiology 33(2): 282-291.
Arief, I.I., Jenie, B.S.L., Astawan, M., Fujiyama, K. &
Witarto, A.B. 2015. Identification and probiotic characteristics of lactic acid
bacteria isolated from Indonesian local beef. Asian Journal of Animal Sciences 9(1): 25-36.
Arief, I.I., Wulandari, Z., Aditia, E.L., Baihaqi, M.,
Noraimah & Hendrawan. 2014. Physicochemical and microbiological properties
of fermented lamb sausages using probiotic Lactobacillus
plantarum IIA-2C12 as starter culture. Environmental Sciences Proceedings 20: 352-356.
Astawan, M., Wresdiyati, T., Suliantari, Arief, I.I. &
Septiawan, R. 2012. Production of symbiotic yogurt-like using indigenous lactic
acid bacteria as functional food. Media Peternakan 66: 9-14.
Astawan, M., Wresdiyanti, T., Arief, I.I. & Febiyanti, D.
2011. Potency of indigenous probiotic lactic acid bacteria as antidiarrheal
agent and immunomodulator. Jurnal Teknologi dan Industri Pangan 22:
11-16.
Ashraf, R. & Smith, S.C. 2016. Commercial lactic acid
bacteria and probiotic strains- tolerance to bile, pepsin and antibiotics. International
Food Research Journal 23(2): 777-789.
Ben Belgacem, Z., Dousset, X., Prévost, H. & Manai, M.
2009. Polyphasic taxonomic studies of lactic acid bacteria associated with
tunisian fermented meat based on the heterogeneity of the 16S-23S RRNA gene
intergenic spacer region. Archives of Microbiology 191(9): 711-720.
Bhadoria, P.B.S. & Mahapatra, S.C. 2011. Prospects,
technological aspects and limitations of probiotics - A worldwide review. European
Journal of Food Research & Review 1(2): 23-42.
Buntin, N., Chanthachum, S. & Hongpattarakere, T. 2008.
Screening of lactic acid bacteria from gastrointestinal tracts of marine fish
for their potential use as probiotics. Songklanakarin Journal of Science and
Technology 30(Suppl. 1): 141-148.
Chugh, B. & Kamal-Eldin, A. 2020. Bioactive compounds
produced by probiotics in food products. Current Opinion in Food Science 32: 76-82.
Cook, M.T., Tzortzis, G., Charalampopoulos, D. &
Khutoryanskiy, V.V. 2012. Microencapsulation of probiotics for gastrointestinal
delivery. Journal of Controlled Release 162: 56-67.
de F. Reque, E., Pandey, A., Franco, S.G. & Soccol, S.
& Carlos, R.S. 2000. Isolation, identification and physiological study of Lactobacillus
fermentum LPB for use as probiotic in chickens. Brazilian Journal of
Microbiology 31(4): 303-307.
Deng, Z., Luo, X.M., Liu, J. & Wang, H. 2020. Quorum
sensing, biofilm, and intestinal mucosal barrier: Involvement the role of
probiotic. Frontiers in Cellular and Infection Microbiology 10: 538077.
Dong, Z. & Lee, B.H. 2018. Bile salt hydrolases:
Structure and function, substrate preference, and inhibitor development. Protein
Science 27(10): 1742-1754.
Efron, B. 1979. Bootstrap Methods: Another look at the
jackknife. Annals of Statistics 7: 1-26.
Erkkilä, S. & Petäjä, E. 2000. Screening of commercial
meat starter cultures at low pH and in the presence of bile salts for potential
probiotic use. Meat Science 55(3): 297-300.
FAO & WHO. 2002. Probiotics in Food Health and
Nutritional Properties and Guidelines for Evaluation. http://www.fao.org.
Fhoula, I., Najjari, A., Turki, Y., Jaballah, S., Boudabous, A. & Ouzari, H. 2013.
Diversity and antimicrobial properties of lactic acid bacteria isolated from
rhizosphere of olive trees and Desert Truffles of Tunisia. BioMed Research
International 2013: 405708.
Florou-Paneri, P., Christaki, E. & Bonos, E. 2013. Lactic
acid bacteria as source of functional ingredients. In Lactic Acid Bacteria –
R & D for Food, Health and Livestock Purposes, edited by Kongo, M.
InTech. pp. 590-614.
Hyronimus, B., Le Marrec, C., Sassi, A.H. & Deschamps, A.
2000. Acid and bile tolerance of spore-forming lactic acid bacteria. International
Journal of Food Microbiology 61(2-3): 193-197.
Jatmiko, Y.D., Howarth, G.S. & Barton, M.D. 2017.
Assessment of probiotic properties of lactic acid bacteria isolated from
Indonesian naturally fermented milk. AIP Conference Proceeding. 1908:
050008.
Kaur, I.P., Chopra, K. & Saini, A. 2002. Probiotics:
Potential pharmaceutical applications. Eur. J. Pharm. Sci. 15(1): 1-9.
Klaenhammer, T.R. & Kullen, M.J. 1999. Selection and
design of probiotics. International Journal of Food Microbiology 50(1-2): 45-57.
Kusdianawati, Mustopa, A.Z., Fatimah & Budiarto, B.R.
2020. Genetic diversity of lactic acid bacteria isolated from Sumbawa horse
milk, Indonesia. Biodiversitas 21(7):
3225-3233.
Kyereh, E. & Sathivel, S. 2021. Viability of Lactobacillus
plantarum NCIMB 8826 immobilized in a cereal-legume complementary food
"weanimix" with simulated gastrointestinal conditions. Food
Bioscience 40(1): 100848.
Lee, C.S., Park, M.H. & Kim, S.H. 2022. Selection and
characterization of probiotic bacteria exhibiting antiadipogenic potential in
3t3‑l1 preadipocytes. Probiotics and Antimicrobial Proteins 14:
72-86.
Lilis Nuraida. 2015. A review: Health promoting lactic acid
bacteria in traditional Indonesian fermented foods. Food Science and Human
Wellness 4(2): 47-55.
Mangia, N.P., Saliba, L. & Deiana, P. 2019. Functional
and safety characterization of autochthonous Lactobacillus paracasei fs103 isolated from sheep cheese and its survival in sheep and cow fermented
milks during cold storage. Annals of Microbiology 69(2): 161-170.
Mechai, A., Debabza, M. & Kirane, D. 2014. Screening of
technological and probiotic properties of lactic acid bacteria isolated from
algerian traditional fermented milk products. International Food Research
Journal 21(6): 2451-2457.
Millette, M., Luquet, F.M., Ruiz, M.T. & Lacroix, M.
2008. Characterization of probiotic properties of lactobacillus strains. Dairy
Science and Technology 88(6): 695-705.
Miteva, V., Boudakov, I., Ivanova-Stoyancheva, G., Marinova,
B., Mitev, V. & Mengaud, J. 2001. Differentiation of Lactobacillus
delbrueckii subspecies by ribotyping and amplified ribosomal dna
restriction analysis (ARDRA). Journal of Applied Microbiology 90(6):
909-918.
Nei, M. & Li, W.H. 1979. Mathematical model for studying
genetic variation in terms of restriction endonucleases. Proceedings of the
National Academy of Sciences 76(10): 5269-5273.
Okada, S., Daengsubha, W., Uchimura, T., Ohara, N. &
Kozaki, M. 1986. Flora of lactic acid bacteria in Miang produced in
northern Thailand. Journal of General and
Applied Microbiology 32: 57-65.
Oluwajoba, S.O., Akinyosoye, F.A. & Oyetayo, V.O. 2013. In
vitro screening and selection of probiotic lactic acid bacteria isolated
from spontaneously fermenting kunu-zaki. Advances in Microbiology 3(4):
309-316.
Pais, P., Almeida, V., Yilmaz, M. & Teixeira, M.C. 2020. Saccharomyces
boulardii: What makes it tick as successful probiotic? Journal of Fungi
(Basel) 6(2): 78.
Pringsulaka, O., Rueangyotchanthana, K., Suwannasai, N.,
Watanapokasin, R., Amnueysit, P., Sunthornthummas, S., Sukkhum, S.,
Sarawaneeyaruk, S. & Rangsiruji, A. 2015. In vitro screening of
lactic acid bacteria for multi-strain probiotics. Livestock Science 174:
66-73.
Rachman, C.N., Kabadjova, P., Prévost, H. & Dousset, X.
2003. Identification of Lactobacillus alimentarius and Lactobacillus
farciminis with 16S-23S rDNA intergenic spacer region polymorphism and pcr
amplification using species-specific oligonucleotide. Journal of Applied
Microbiology 95(6): 1207-1216.
Rattanachaikunsopon, P. & Phumkhachorn, P. 2010. Lactic
acid bacteria: Their antimicrobial compounds and their uses in food production. Annals of Biological Research 1(4):
218-228.
Rohlf, F.J. 1998. NTSYSpc Numerical Taxonomy and
Multivariate Analysis System. Version 2.0. New York: Applied Biostatistics
Inc.
Saitou, N. & Nei, M. 1987. The neighbor-joining method: A
new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4(4):
406-425.
Santacroce, L., Charitos, I.A. & Bottalico, L. 2019. A
successful history: Probiotics and their potential as antimicrobials. Expert
Review of Anti-Infective Therapy 17(8): 635-645.
Savadogo, A., Ouattara, A.T., Bassole, I.H.N. & Traore,
S.A. 2006. Bacteriocins and lactic acid bacteria - A minireview. African
Journal of Biotechnology 5(9): 678-684.
Schillinger, U. & Lücke, F.K. 1989. Antibacterial
activity of Lactobacillus sake isolated from meat. Applied and
Environmental Microbiology 55(8): 1901-1906.
Shabani, R., Nosrati, M., Javandel, F., Alaw Gothbi, A.A.
& Kioumarsi, H. 2015. The effect of probiotics on growth performance of
broilers. Proceeding Biology 12(1): 5450-5452.
Shehata, M.G., El Sohaimy, S.A., El-Sahn, M.A. & Youssef,
M.M. 2016. Screening of isolated potential probiotic lactic acid bacteria for
cholesterol lowering property and bile salt hydrolase activity. Annals of
Agricultural Sciences 61(1): 65-75.
Shi, T., Nishiyama, K., Nakamata, K., Aryantini, N.P.D.,
Mikumo, D., Oda, Y., Yamamoto, Y., Mukai, T., Sujaya, I.N., Urashima, T. &
Fukuda, K. 2012. Isolation of potential probiotic Lactobacillus rhamnosus strains from traditional fermented mare milk produced in Sumbawa Island of
Indonesia. Bioscience, Biotechnology, and Biochemistry 76(10): 1897-1903.
Sulistiani. 2018. Selection of potential probiotic lactic
acid bacteria isolated from palm sap (Borassus flabellifer Linn.) origin
Kupang, East Nusa Tenggara. AIP Conference Proceeding. 2002(1): 020059.
Sulistiani, Novarina, I., Inawati, Dinoto, A., Julistiono,
H., Handayani, R. & Saputra, S. 2020. Assesment of potential probiotic
lactic acid bacteria from tempe and tape. IOP Confereren Series: Earth and
Environment Science Proceeding 572: 0120276.
Swanson, K.S., Gibson, G.R., Hutkins, R., Reimer, R.A., Reid,
G., Verbeke, K., Scott, K.P., Holscher, H.D., Azad, M.B., Delzenne, N.M. &
Sanders, M.E. 2020. The International Scientific Association for Probiotics and
Prebiotics (ISAPP) consensus statement on the definition and scope of
synbiotics. Nature Reviews
Gastroenterology & Hepatology 17(11): 687-701. DOI: 10.1038/s41575-020-0344-2
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M.
& Kumar, S. 2011. MEGA 5: Molecular evolutionary genetics analysis using
maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular
Biology and Evolution 28(10): 2731-2739.
Tokatli, M., Gülgör, G., Elmaci, S.B., İşleyen, N.A. & Özçelik, F. 2015. In vitro properties of potential
probiotic indigenous lactic acid bacteria originating from traditional pickles. BioMed Research International 2015: 315819.
Wan, M.L.Y., Forsythe S.F. & El-Nezami, H. 2019.
Probiotics interaction with foodborne pathogens: A potential alternative to
antibiotics and future challenges. Critical Reviews in Food Science and
Nutrition 59(20): 3320-3333.
Zhang, B., Wang, Y., Tan, Z., Li, Z., Jiao, Z. & Huang,
Q. 2016. Screening of probiotic activities of lactobacilli strains isolated
from traditional tibetan qula, a raw yak milk cheese. Asian-Australasian
Journal of Animal Sciences 29(10): 1490-1499.
Zheng, J., Wittouck, S., Salvetti, E., Franz, C.M.A.P.,
Harris, H.M.B., Mattarelli, P., O'Toole, P.W., Pot, B., Vandamme, P., Walter,
J., Watanabe, K., Wuyts, S., Felis, G.E., Gänzle, M.G. & Lebeer, S. 2020. A
taxonomic note on the genus Lactobacillus: Description of 23 novel
genera, emended description of the genus Lactobacillus Beijerinck 1901,
and union of Lactobacillaceae and Leuconostocaceae. International
Journal of Systematic and Evolutionary Microbiology 70(4): 2782-2858.
*Corresponding author; email: haryobimo88@gmail.com
|